

Cyber Jungle Intelligence Series

Tracking C2 Backdoors in Open Source Projects

Table of Contents

Summary

Disclaimer

How C2 Backdoors Appear in Open Source

Example #1: ImageMagick Payload Image (CVE-2016-3714) with Chinese Backdoor

Example #2: Nezha Agent Implant Hosted on GitHub

Example #3: Backdoored Fastjson PoC (CVE-2017-18349)

Example #4: Android RAT with C2 IP Address

Lessons Learned

Indicators of Compromise

Lead of Research: Cristian Cornea

We reviewed several public GitHub repositories and discovered multiple hard-coded Command-and-Control (C2) IP addresses embedded across different types of open-source content.

The C2s appeared in three distinct ways:

- 1. In exploits and proof-of-concept (PoC) code
- 2. Inside intentionally backdoored source code
- 3. In source-code comments

In this report, we present 4 real-world cases that illustrate C2 endpoints embedded within open-source projects. We also include a set of *Indicators of Compromise (IoCs)* identified across multiple repositories, beyond the examples showcased.

Cyber Jungle Intelligence Series represents a line of investigative threat-intelligence reports designed to navigate the dense, unpredictable, and often hostile terrain of the cyber landscape.

Disclaimer

This research was conducted solely for educational purposes. No exploitation, unauthorized access, or interaction with live systems was performed, and no attempts were made to modify, execute, or distribute any malicious code.

The objective of this work is to raise awareness about the risks associated with malicious or backdoored open-source content, and to help security teams, developers, and organizations strengthen their supply-chain security practices.

We explicitly disclaim any intention to promote, assist, or enable malicious activity. Nothing in this report should be interpreted as legal, operational, or tactical advice for offensive use. Any misuse of the information contained herein is strictly prohibited. Zerotak Security, its researchers, and its partners assume no liability for actions taken by third parties based on this material.

How C2 Backdoors Appear in Open Source

We identified at least the following ways to detect C2 backdoors in Open Source projects:

1. Backdoored Exploits

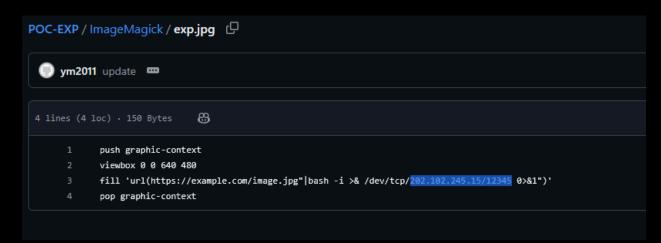
Attackers often embed a callback to a Command and Control (C2), turning a PoC into a delivery mechanism.

2. Backdoored Source Code

Open-source projects can be forked and modified by anyone. A malicious actor can easily publish a modified version of a legitimate project that contains a reverse shell, RAT, miner, or beacon.

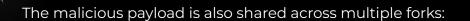
3 Comments

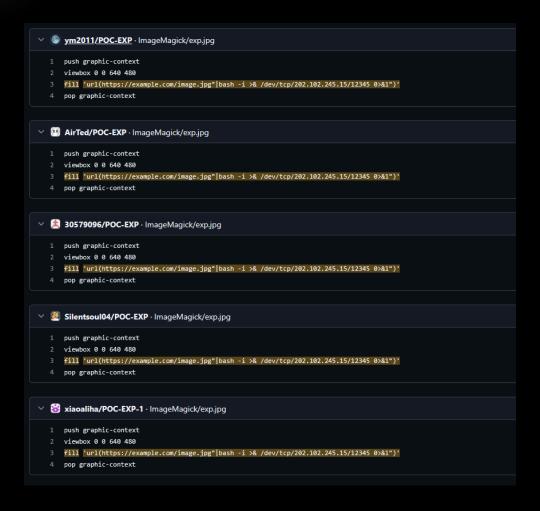
The malicious C2 endpoint is not removed from the project entirely. Instead, it is simply commented out within the source code.

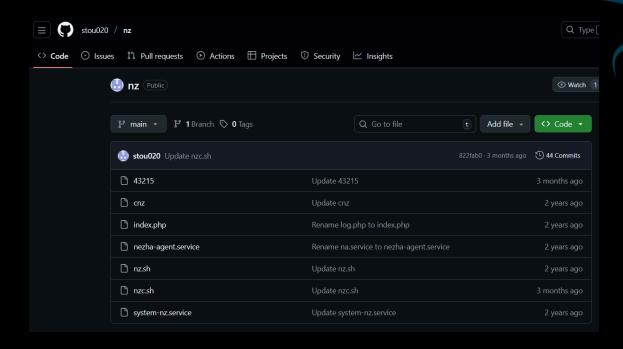


ImageMagick Payload Image (CVE-2016-3714) with Chinese Backdoor

A payload used to exploit the ImageMagick vulnerability (CVE-2016-3714) contained an embedded IP address belonging to an alleged C2 infrastructure.

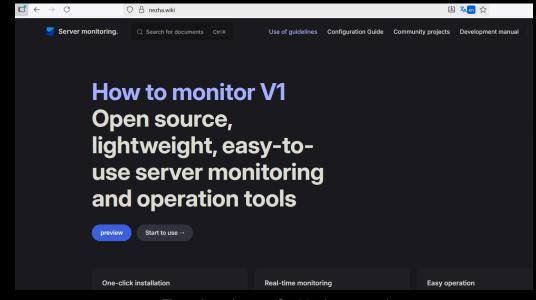

Source:


https://github.com/ym2011/POC-EXP/blob/206b22d3a6b2a172359678df33bbc5b2ad04b6c3/ImageMagick/exp.jpg



Example #2:

Nezha Agent Implant Hosted on GitHub



What is Nezha Agent?

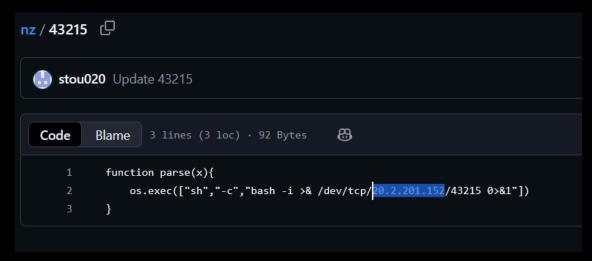
Nezha is a remote management and monitoring (RMM) tool of Chinese origin that has legitimate uses but is widely documented as being weaponized by threat actors.

(Translated page for Nezha agent)

It is commonly known that RMM software has a dual-use, both for system administrators and hackers. As we can see Nezha is being referenced in multiple articles as "Weaponized by China-Nexus Hackers" or "Chinese Hackers Weaponize Open-Source Nezha Tool in New Attack Wave".

Below are listed multiple references describing how this tool has been seen in the wild used for malicious purposes:

- <u>The Crown Prince, Nezha: A New Tool Favored by China-Nexus Threat Actors</u> (source: <u>huntress.com</u>)
- Nezha Attacks Detection: Open-Source Monitoring Tool Weaponized by <u>China-Nexus Hackers to Deploy Gh0st RAT</u> (source: <u>socprime.com</u>)
- <u>Open-source monitor turns into an off-the-shelf attack beacon</u> (source: <u>csoonline.com</u>)



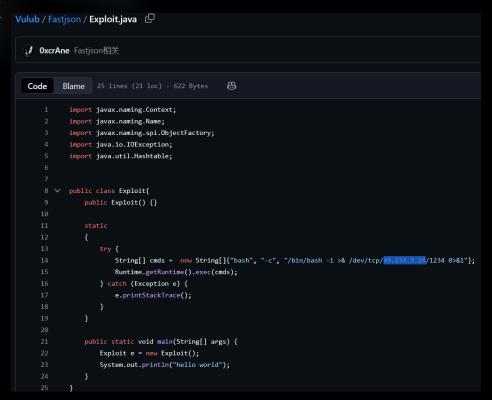
In the repository we examined, the author uploaded:

- A webshell (index.php)
- Nezha backdoor system services
- An additional file (43215) containing a reverse shell callback to an IP address hosted in Hong Kong

Source: https://aithub.com/stou020/nz/blob/main/43215

Backdoored Fastjson PoC (CVE-2017-18349)

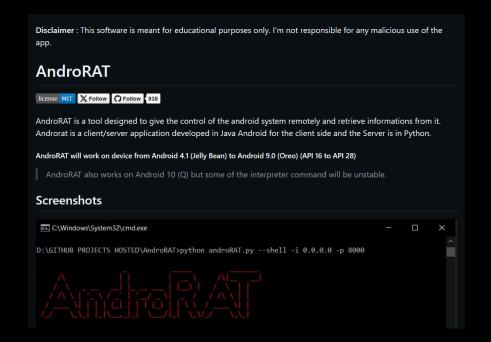
Although Fastjson has a long history of exploitation and numerous PoCs exist, not all of them feature embedded C2 backdoors.

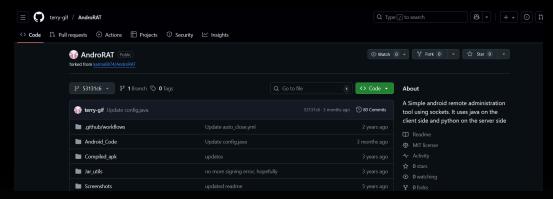


In this GitHub example, the PoC source code contains additional code referencing attacker infrastructure, effectively turning a test exploit into a staged compromise.

ZEROTAK

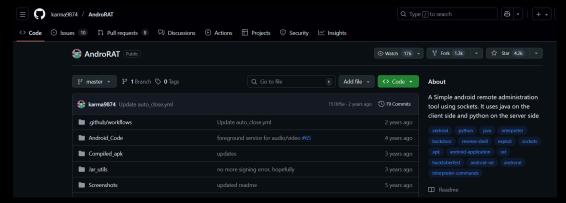
Source: https://github.com/0xcrAne/Vulub/tree/75f2a832bd731e466868e2fa45e9a2a24cf8b23e/Fastison


49.234.9.24 was not found in our database		
ISP	Tencent cloud computing (Beijing) Co., Ltd.	
Usage Type	Data Center/Web Hosting/Transit	
ASN	Unknown	
Domain Name	tencent.com	
Country	China	
City	Shanghai, Shanghai	



Android RAT with C2 IP Address

An AndroRAT fork uploaded to GitHub included a Java configuration file pointing directly to a C2 IP used for remote device control.



Source: https://github.com/terry-gif/AndroRAT/tree/53131c611537811f41cc6aaa3d5e979dfaf3cef7

Original repository of AndroRAT:

Source: https://github.com/karma9874/AndroRAT

What makes this case interesting is that the repository looked like a benign fork at first glance until examining the config.java file revealed the connection endpoint.

Source:

https://github.com/terry-gif/AndroRAT/blob/53131c611537811f41cc6aaa3d5e979dfaf3cef7/Android_Code/app/src/main/java/com/example/reverseshell2/config.java#L4

156.0.213.42 was found in our database!			
This IP was reported 29 times. Confidence of Abuse is 17%:			
17%			
100			
ISP	Sous classe utilisée pour l'accès Internet des abonnés du réseau Mobile.		
Usage Type	Mobile ISP		
ASN	AS37136		
Domain Name	moov.bj		
Country	I ■ Benin		
City	Cotonou, Littoral		

Lessons Learned

Supply-chain security is not limited to packages and libraries. Attackers also abuse open-source artifacts as delivery vectors.

For example, forks are a common insertion point for backdoors. Validating who created a fork, what was changed, and when is essential for identifying hidden C2 callbacks.

As a closing note, treat public PoCs and cloned repositories with caution and verify every artifact before execution.

47.113.187.190

202.103.243.122

61.164.47.202

202.102.245.15

81.71.84.61

219.152.63.100

120.79.33.25

132.232.23.92

45.78.38.107

20.2.201.152

38.47.101.230

39.106.51.35 39.107.99.211

39.107.33.211

39.108.164.219

39.106.75.37

34.92.4.196

47.109.58.205

47.120.74.19

47.98.125.75

49.234.9.24

43.143.168.146

47.94.239.235

47.52.233.92

47.93.248.221

47.101.145.9

47.96.116.171

47.101.214.85

47.236.36.93

49.232.202.102

47.94.236.117

59.110.35.240

60.205.202.176

60.204.216.3

62.234.82.111

62.234.210.59

81.71.17.84

81.68.139.186

Questions about this report or our threat-intelligence services?

Email us at collaboration@zerotak.com

Website: https://zerotak.com

